persamaanberikut dengan metode eliminasi a. 2x + y = 4 2x - y = 0 Diketahui : Persamaan linear dua variabel 2x + y = 4 2x - y = 0 Ditanya : Selesaianya adalah ? Jawaban: 2x + y = 4 2x - y = 0 2y = 4 y = 2 Nilai y = 2, substitusikan Ke salah satu persamaan diatas: 2x + y = 4 2x + 2 = 4 2x = 4-2 2x = 2 x = 1 1207/2018 6:53 Aljabar Linear Elementer 24 Sistem Persamaan Linear Homogen Bentuk umum • SPL homogen merupakan SPL yang konsisten, selalu mempunyai solusi. • Solusi SPL homogen dikatakan tunggal jika solusi itu adalah • Jika tidak demikian, SPL homogen mempunyai solusi tak hingga banyak. 1!!!−! (!)−!Ulangi!proses!dengan!cara!yang!sama,!sehingga!nilai!iterasi!ke8radalah!!(!),!(!)!dan! 1!!!!−! (!)−! 1!!!!−! (!!!)−! 1!!!!−! (!!!)− Diketahuisistem persamaan linear sebagai berikut. Diketahui sistem persamaan linear sebagai berikut. 3x+4y−5z=122x+5y+z=176x−2y+3z=17 Jika penyelesaian dari sistem persamaan tersebut adalah x, y, dan z, maka nilai dari x+y−z adalah . Diketahuisistem persamaan linear berikut x+y+z= 12 x+2y-z = 12 x+3y+3z = 24 Himpunan penyelesaian sistem persamaan linear di atas adalah {(x, y, z)} dengan perbandingan x : y : z adalah Sistem Persamaan Tiga Variabel Selesaikansistem persamaan linear tiga variabel berikut! ⎩⎨⎧ 3x−2y+5z=72x+3y−2z=−34x+5y−7z=0 Diketahui. Eliminasi persamaan (i) dan (ii) Eliminasi persamaan (i) dan (iii) Eliminasi persamaan (iv) dan (v) Subtitusi ke persamaan (iv) Subtitusi ke persamaan (i) Dengan demikian, penyelesaian sistem persamaan linear tiga variabel eNnqUe. PertanyaanDiketahui sistem persamaan linear x+2y = a dan 2x-y = 3. Jika a merupakan bilangan positif terkecil sehingga sistem persamaan linear tersebut mempunyai penyelesaian bilangan bulat x = x 0 dan y = y 0 , maka nilai x 0 +y 0 adalah...Diketahui sistem persamaan linear x+2y = a dan 2x-y = 3. Jika a merupakan bilangan positif terkecil sehingga sistem persamaan linear tersebut mempunyai penyelesaian bilangan bulat x = x0 dan y = y0, maka nilai x0+y0 adalah...12345HMMahasiswa/Alumni Universitas Pendidikan IndonesiaJawabanPembahasan2x - y = 3 x + 2y = a Gunakan metode eliminasi – subtitusi Mencari x 2x - y = 3 x2 x + 2y = a x1 Mencari y 2x - y = 3 x1 x + 2y = a x2 Nilai a yang memenuhi agar nilai x dan y keduanya bilangan bulat adalah 6+a kelipatan 5, berarti a 4,9,14,19,24,... 3-2a kelipatan 5, berarti a 1,4,... Maka nilai a yang terkecil adalah 4 Sehingga2x - y = 3 x + 2y = a Gunakan metode eliminasi – subtitusi Mencari x 2x - y = 3 x2 x + 2y = a x1 Mencari y 2x - y = 3 x1 x + 2y = a x2 Nilai a yang memenuhi agar nilai x dan y keduanya bilangan bulat adalah 6+a kelipatan 5, berarti a 4,9,14,19,24,... 3-2a kelipatan 5, berarti a 1,4,... Maka nilai a yang terkecil adalah 4 Sehingga Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!3rb+Yuk, beri rating untuk berterima kasih pada penjawab soal! Kelas 10 SMASistem Persamaan LinearSistem Persamaan Linear Tiga VariabelSistem Persamaan Linear Tiga VariabelSistem Persamaan LinearALJABARMatematikaRekomendasi video solusi lainnya0149Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...0246Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...0146Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...0155Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua...Teks videoHalo Ko Friends di sini kita punya soal diketahui sistem persamaan linear pada satu per x + 1 per y sama dengan 22 per y min 1 per z sama dengan min 3 + 1 per 1 per Z = 2 maka nilai dari X + Y + Z Itu sama dengan berapa Nah di sini yang pertama kita bisa Misalkan dulu jatuh kita terus misal yaitu pada saat kemudian 1 pria ini sebagai lalu 1% itu sebagai C kemudian disini kita bisa tulis yaitu yang pertama kita bisa pada satu per x + 1 per y sama dengan dua ini kita tulis yaitu a. Kemudian + b = 2 Newton yang pertama untuk persamaan pertama Kemudian yang kedua itu kita bisa tulis yaitu 2 B kemudian MinC = yaitu min 3 nah ini untuk bersamanya kedua selanjutnya disini untuk yang ketiga yaitu kita bisa tulis a kemudian = 2 untuk persamaan yang ketiga Nah yang selanjutnya disini kita bisa cari yaitu yang pertama di sini kita bisa gunakan metode eliminasi Nah jadi disini kita gunakan itu persamaan 3 dengan persamaan yang kedua Nah jadi disini kita bisa tulis yaitu a. Minta itu kan sama dengan yaitu 2 nah kemudian yang selanjutnya disingkat dalam 2 B kemudian = Min 30 kemudian kita bisa kurangi di sini menjadi itu hujan minggu ini menjadi A min 2 B Min C min H = 12 min 3 itu menjadi 5 nah ini menjadi persamaan yang ke-4 Nah kalau di sini kita kurangi lagi yaitu pada A min 2 B = 5 ini dengan yaitu pada persamaan yang pertama yaitu a + b = 2 kemudian kita kurangi di sini menjadi Amin itu menjadi habis kemudian min 2 B min b min 3 b = 5 min 2 itu menjadi yaitu 3 maka banyak itu sama dengan 3 per min 3 Jadi pengen ketemu sama dengan yaitu min 1 nah, kemudian disini kita bisa substitusikan yaitu B = min 1 ke persamaan yaitu yang ke-26 makan di sini menjadi dua kali dengan min 1 Min C = min 36 maka di sini min 2 min y = min 3 maka A min b = min 3 + 2 kerajaan di sini kita kerjakan itu menjadi disini adalah min c = itu min 1 maka itu sama dengan 1 nah, salonnya jangan di sini kita substitusikan pada C = 1 ini ke persamaan yang ketiga Nah jadi disini akan menjadi yaitu a hujan min 1 = 2 maka a = 2 + 100 = 3 nah, kemudian setelah seperti ini kita bisa masukkan ke dalam permisalan nya nah yang pertama di sini permisalan ini kita ubah dulu untuk mencari nilai dari x y z nya Nah jadi di sini pak 1 x = ini bisa kita Ubah menjadi x = 1 per a untuk di sini yang kedua yaitu itu sama dengan 1 per B lalu untuk y = 11 per C nah makan di sini untuk nilai x ini sama dengan yaitu satu per satu kan tadi kita menemukan itu hanya itu kan = 3 Nah jadi di sini untuk X = 130 dan Y = 1 per B nah itu kan adalah disini P = min 1 nah kita tulis di sini min 1 maka di sini itu sama dengan yaitu min 1 Kemudian untuk yang catnya itu = 1 per C Nah itu kan tadi adalah C = 1 nah kita tulis di sini 1 per 1 = 1 maka nilai dari x + y + z = yaitu 1 per 3 kemudian + min 1 lalu + 1 Mah makan di sini tuh kita lihat min 1 dengan pesat ini kan habis maka tersisa itu sama dengan 1 per 3 Nah ketemu jawabannya 1/3 mah disini option yang tepat itu adalah absennya sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 3 tahun lalu Real Time5menit Halllooo Gengs. Bagaimana keadaan kalian hari ini? Semoga selalu diberi kesehatan yang baik olehTuhan yang maha esa. Pada kesempatan kali ini saya akan memberikan contoh-contoh tentang sistem persamaan linear untuk dua variabel. Tanpa lama-lama, berikut ini soal-soalnya. SOAL PERTAMA Diketahui penyelesaian persamaan linear dua variabel adalah 4,5 dan 1,3. Tentukan persamaan linear dua variabel tersebut. PEMBAHASAN Penyelesaian persamaan linear dua variabel yaitu 4,5 dan 1,3. Penyelesaian linear dua variabel tersebut dapat dicari menggunakan metode yang biasanya kita gunakan untuk mencari persamaan garis yang melalui dua titik. Cara mengerjakannya seperti berikut ini. Titik 4,5 kita akan anggap sebagai titik $x_1,y_1$ sedangkan titik 1,3 akan kita anggap sebagai titik $x_2,y_2$ sehingga kita akan peroleh hasil sebagai berikut ini. Dengan demikian, pesamaan linear kedua titik tersebut adalah -2x + 3y = -7 SOAL KEDUA Tentukan nilai a jika diketahui persamaan linear dua variabel dan penyelesaiannya sebagai berikut ax-5y=a-1 dengan penyelesaian 2,1 PEMBAHASAN Diketahui persamaan linear dua variabel ax–5y=a–1 dengan penyelesaian 2,1. Substitusikan x=2 dan y=1 kedalam persamaan ax–5y=a–1. Sehingga akan diperoleh nilai a seperti berikut ini. ax–5y=a – 1 a2–51=a–1 2a–5=a–1 2a–a=-1+5 a=4 Dengan demikian nilai adalah 4. SOAL KETIGA Tentukan penyelesaian system persamaan linear dua variabel berikut ini menggunakan metode eliminasi. Berikut persamaannya 2x-3y=-10 persamaan 1 x+2y=2 persamaan 2 PEMBAHASAN Karena pada soal diperintahkan untuk menggunaan metode eliminasi maka kita akan menggunakan metode eliminasi. Kita akan mengeliminasi atau menghilangkan x agar kita mendapatkan nilai y dengan cara sebagai berikut. 2x-3y=-10 1 x+2y=2 2 Kita mengalikan persamaan satu dengan 1 danpersamaan kedua dengan 2 sebagaiberikut 2x-3y=-10 2x+4y=4 Setelah itu, kita kurangkan kedua persamaan yang telah diperoleh. Sehingga kita akan peroleh hasil seperti berikut. -7y=-14 y=2 Kita telah mendapatkan nilai y yaitu 4. Selanjutnya kita akan mencari nilai x dengan cara mengeliminasi y, seperti berikut ini. 2x-3y=-10 1 x+2y=2 2 Kita akan mengalikan persamaan pertama dengan 2 dan persamaan kedua dengan 3, seperti berikut ini 4x-6y=-20 3x+6y=6 Setelah itu kita kurangkan kedua persamaan diatas. Seperti berikut ini 7x=-14 x=-2 Sehingga kita telah peroleh nilai x yaitu -2 Dengan demikian, nilia x yang kita peroleh dari persamaan 2x-3y=-10 dan x+2y=2 yaitu -2 dan 2. SOAL KEEMPAT Gunakan sistem persamaan linear berikut ini untuk menentukan penyelesaian sistem persamaan. gunakan metode substitusi. 4x+3y/7-3=-2 x+2/3-3y+1/4=4 PEMBAHASAN Langkah pertama yang akan kita lakukan yaitu membuat salah satu persamaan kedalam bentuk x atau y. Pada soal ini saya akan ubah persamaan pertama kedalam bentuk x, dimana nilai x ini akan disubstitusi kedalam persamaan kedua. 4x+3y/7-3=-2 4x+3y/7=1 4x+3y=7 x=7-3y/4 Nahhhh nilai x-nya sudah kita peroleh, selanjutnya akan kita substitusikan x kedalam persamaan kedua. Nahhhhh… kita sudah memperoleh nilai y-nya yaitu -3. Selanjutnya akan kita cari nilai x dengan cara mensubstitusikan nilai y kedalam x=7-3y/4 Dengan demikian, akan kita peroleh nilai x sebagai berikut x=7-3y/4 x=7-3-3/4 x=7+9/4 x=4 Jadi, penyelesaian dari dua persamaan diatas yaitu x=4 dan y=-3 SOAL KELIMA Natan pergi kesebuah toko untuk membeli pensil dan bolpoin. Harga 3 pensil dan 2 bolpoin yaitu Rp Harga 4 pensil dan 1 bolpoin yaituRp Natan akan membeli 1 pensil dan 2 bolpoin. Natan menyerahkan selembar uang sepuluh ribuan. Berapakah uang kembalian Natan? PEMBAHASAN Untuk menjawab soal seperti ini, ada beberapa langkah yang perlu Gengs kerjakan yaitu diantaranya variabel-variabelnya, kemudian lakukan pemisalan permasalahan yang diberikan kedalam model matematika system persamaan linear dua variabel nilai-nilai variabel yang telah diperoleh kedalam model matematika yang telah dibuat pada langkah kedua. Dengan memperhatikan empat langkah diatas, mari kita kerjakan soal tersebut. LANGKAH 1 Misalkan x=harga 1 buah pensil y=harga 1 buah bolpoin LANGKAH 2 soal di atas dinyatakan bahwa harga 3 pensil dan 2 bolpoin yaitu Rp Dari keterangan tersebut kita peroleh persamaan berikut. 3x+2y= soal di atas dinyatakan bahwa harga 4 pensil dan 1 bolpoin yaitu Rp Dari keterangan tersebut kita peroleh persamaan berikut. 4x+y= 1 pensil dan 2 bolpoin Natan menyerahkan selembar uang sepuluh ribuan. Dari keterangan tersebut kita peroleh persamaan berikut. x+2y=A Uang kembalian Natan = 10000-A Dengan demikian kita mempunyai dua persamaan yaitu 3x+2y= dan 4x+y= LANGKAH 3 Untuk menyelesaikan system persamaan linear dapat kita gunakan beberapa cara. Pada soal ini akan kita gunakan metode substitusi. Langkah pertama yang akan kita lakukan yaitu membuat salah satu persamaan kedalam bentuk x atau y. Pada soal ini saya akan ubah persamaan kedua kedalam bentuk y, dimana nilai y ini akan disubstitusi kedalam persamaan pertama. 4x+y=8000 y=8000-4x Nahhhh nilai y-nya sudah kita peroleh, selanjutnya akan kita substitusikan y kedalam persamaan pertama. 3x+2y=8500 3x+28000-4x=8500 3x+16000-8x=8500 -5x=-7500 x=1500 Nahhhhh… kita sudah memperoleh nilai x-nya. Selanjutnya akan kita cari nilai y dengan cara mensubstitusikan nilai x kedalam y=8000-4x Dengan demikian, akan kita peroleh nilai y sebagai berikut y=8000-4x y=8000-41500 y=8000-6000 y=2000 LANGKAH 4 Substitusikan x=1500 dan y=2000 kedalam x+2y x+2y=1500+22000=1500+4000=5500 Natan memberikan selembar uang sepuluh ribuan sehingga uang kembaliannya sebagai berikut. Uang kembalian Natan= 10000-5500=4500 Jadi, uang kembalian Natan yaitu Rp SOAL KEENAM Budi lebih tua daripada Ani. Dua tahun lalu, dua kali usia Ani ditambah 3 kali usia Budi adalah 49 tahun. Saat ini, selisih usia mereka yaitu 3 tahun. Berapakah usia Ani dan Budi. PEMBAHASAN Misalkan x=usia Ani saat ini y=usia Budi saat ini Budi lebih tua daripada Ani dengan demikian y>x Dari keterangan pada soal Dua tahun lalu, dua kali usia Ani ditambah tiga kali usia Budi adalah 49 tahun, akan diperoleh persamaan sebagai berikut 2x-2+3y-2=49 2x-4+3y-6=49 2x+3y-10=49 2x+3y=59 Dari keterangan lebih tua daripada Ani ini, selisih usia mereka 3 tahun, akan diperoleh persamaan sebagai berikut y-x=3 x-y=-3 dengan demikian diperoleh sistem persamaan linear dua variabel yaitu 2x+3y=59 dan x-y=-3 selanjutnya akan kita cari nilai x dan y. Pada soal ini akan saya gunakan metode eliminasi-substitusi. 2x+3y=59 1 x-y=-3 2 Kita mengalikan persamaan satu dengan 1 dan persamaan kedua dengan 2 sebagai berikut 2x+3y=59 2x-2y=-6 Setelah itu, kita kurangkan kedua persamaan yang telah diperoleh. Sehingga kita akan peroleh hasil seperti berikut. 5y=65 y=13 Kita telah mendapatkan nilai y yaitu 13. Selanjutnya kita akan mencari nilai x dengan cara mensubstitusi nilai y kedalam persamaan 2, seperti berikut ini. x-y=-3 x-13=-3 x=10 Sehingga kita telah peroleh nilai x=10 dan y=13 Dengan demikian, usia Ani saat ini 10 tahun dan usia Budi saat ini 13 tahun. SOAL KETUJUH Tentukan penyelesaian sistem persamaan linear dua variabel dari 2x-3y=-10 dan x+2y=2 menggunakan metode grafik. PEMBAHASAN Pertama-tama, kita akan menganggap kedua persamaan di atas sebagai garis pada bidang kartesius dan kita akan menggambar kedua garis tersebut pada bidang kartesius. Cara yang akan kita lakukan untuk menggambar garis 2x-3y=-10 yaitu sebagai berikut. Ambil dua titik sembarang yang memenuhi persamaan tersebut. Misalkan kita ambil y=0 maka 2x-30=-10 2x=-10 x=-5 Diperoleh titik -5,0 Misalkan kita ambil lagi y=2 maka 2x-32=-10 2x-6=-10 2x=-4 x=-2 Diperoleh titik -2,2 Cara yang akan kita lakukan untuk menggambar garis x+2y=2 yaitu sebagai berikut. Ambil dua titik sembarang yang memenuhi persamaan tersebut. Misalkan kita ambil x=0 maka 0+2y=2 y=1 Diperoleh titik 0,1 Misalkan kita ambil lagi y=0 maka x+40=2 x=2 Diperoleh titik 2,0 Dengan demikian kedua garis tersebut dapat digambar dalam satu bidang kartesius. Setelah digambarkan akan terlihat bahwa kedua garis tersebut berpotongan di titik -2,2. Jadi, penyelesaiannya -2,2 Mudah bukan. Sampai disini dulu ya Gengs … Jangan lupa untuk terus berlatih mengerjakan soal-soal lainnya. Semoga bermanfaat. sheetmath Kelas 11 SMAMatriksPenyelesaian Persamaan Linear Dua atau Tiga Variabel dengan Menggunakan Konsep MatriksDiketahui sistem persamaan linear berikut 3x+2y+4z=11 2x+z=3 x-y=-1 Tentukan nilai 4x-3y+ Persamaan Linear Dua atau Tiga Variabel dengan Menggunakan Konsep MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0107Himpunan penyelesaian persamaan polinomial x^3+x^2-4x-4=0...0544Bu Ani adalah seorang pengusaha makanan ringan yang menye...0412Avi dan Anti belanja di toko yang sama. Avi membeli 5 bun...0756Harga 4 kg salak, 1 kg jambu, dan 2 kg kelengkeng adalah ...Teks videosini kita punya soal di mana kita memiliki sistem persamaan linear sebanyak tiga persamaan yang pertama ini persamaan kedua kalinya persamaan yang ketiga lalu kita harus mencari 4 X min 3 Y + 2 Z berarti kita masih harus mencari x y dan z nya terlebih dahulu di sini merupakan soal matriks matriks yang berukuran 3 * 3 nanti pastinya kan ada tiga variabel yaitu x y dan Z maka kita gunakan rumus sebagai berikut yaitu untuk mencari X jadi kita perlu mencari determinan X dibagi dengan determinan utama Kemudian untuk mencari y determinan y dibagi dengan determinan utama untuk menjadi set ke Terminal Jadi bagi dengan determinan utama yang pertama kita harus mengubah soalnya ke dalam bentuk matriks maka 324 kemudian 2 x / 2Di sini katanya tadi 01 + 1 Min 10 x dengan x y z nilainya adalah yang disediakan = 11 3 dan negatif 1. Kita harus mencari x y z nya terlebih dahulu di sini terdapat rumus yang sudah 1 kita perlu mencari determinan utamanya terlebih dahulu kita cari determinan matriks tiga kali tiga kita gunakan cara 1 seperti biasanya 32120 - 1410 lalu kita tulis lagi 3 2 1 2 0 dan negatif 1. Nah, cara sarrus seperti biasanya. Jadi yang ini dijumlahkan ditambah ini kemudian ditambah yang ini yang ini kita kurang kan ini kita kurangkan Dan yang ini kita kurangkanMaka hasilnya adalah 0 + 2 min 8 lalu kita kurangi 0 min 3 + 0 adalah negatif 6 ditambah 3 yaitu negatif 3 ini adalah determinan utamanya lalu kita harus mencari dirinya juga bagaimana caranya tadi extra teksnya atau es yang ada di sini kita ganti dengan yang nilai dari sama dengan ini Mari kita coba tadi dek kita ganti 3 min 120 Min 14 10 kita kalikan dengan 11230 - 1 - 1 seperti cara satu seperti yang tadi kita menghasilkan min 2 min 12 dikurangi 0 Min 11 + 0 nilainya adalah negatif 3lalu kita masih harus mencari Dia Dan Dia chatnya sama seperti desa di tadi yang ada di ruas kedua ini kita ganti dengan yg lain ada di dengan maka 321 kemudian 11 3 - 141 kita kalikan dengan 3 2111 3 dan negatif 1 sama menggunakan cara sarrus seperti tadi tadi kita menemukan 0 ditambah 11 dikurangi 8 dikurangi 12 min 3 ditambah 0 nilainya adalah negatif 6 kalau kita masih harus mencari genset sama seperti kita ganti aja dulu ada 3 dengan nilai dari = 3 2 1 2 0 min 1 1131 kita kalikan dengan 32120 - 1 menggunakan cara sarrus tadi tadi nilainya adalah 0 ditambah 6 Min 22 dikurangi 0 - 9 - 4 - 6 ditambah 13 yaitu negatif 3 kita sudah menemukan DxD disehatkan vitamin utamanya tadi kita bisa mencari nilai F adalah D X min 3 min 3 adalah 1 kalau kita mencari nilai dari G min 6 per min 3 adalah 2 + Z adalah desa terdiri 3 per 3 yaitu 1 kita sudah menemukan nilai dari y dan Z Mari kita cari adalah 4 X min 3 y ditambah 2 Z 4 x 14 b kurangi dengan 326 + 2 * 12 hasilnya adalah 0 Yan dan sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul MatematikaALJABAR Kelas 10 SMASistem Persamaan LinearSistem Persamaan Linear Tiga VariabelSistem Persamaan Linear Tiga VariabelSistem Persamaan LinearALJABARMatematikaRekomendasi video solusi lainnya0149Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...0246Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...0146Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...0155Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua...Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua...

diketahui sistem persamaan linear berikut